what is needed

store generalized objects in persistent storage

store generalized object streams in persistent
storage

store ndnrtc streams in persistent storage
serve stored data immediately



generalized object

e used for publishing
annotations

* thereis CNL
implementation for |

fetching and publishing <object_prefix>
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g.0. stream

* allows client to publish generalized objects as a stream
— (i.e. annotations per frame)

e fetching uses RDR to get latest data
e g.o.stream fetching/publishing will be part of CNL (to

be implemented by Nov) S
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ndnrtc stream

e custom namespace,
data + metadata

* will be implemented by
Peter and code [ [

provided as a module ﬁ
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repo extension?

we want repo to be a stand-alone process running
24/7

producer “tells” repo:

— what data to fetch (prefix)

— how to fetch (fetching pattern)

repo makes fetched data immediately available for
incoming requests (under original prefix)

repo uses fast key-value store (exact name match) --
RocksDB



implementation

* running code by November:
— g.o. stream fetch pattern — CNL (JeffT)
— ndnrtc stream fetch pattern - “ndnrtc”-module (Peter)
— protocol extension - Xinyu?

* questions:

— shall we use existing repo code base?
* this will require adding new dependencies: RocksDB, CNL, ndn-cpp
* may be the fastest way to go

— or shall we create a separate codebase (project scaffold w/
dependencies can be provided by Peter quickly)



additional slide: storage benchmark
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