what is needed

store generalized objects in persistent storage

store generalized object streams in persistent
storage

store ndnrtc streams in persistent storage
serve stored data immediately

generalized object

e used for publishing
annotations

* thereis CNL
implementation for |

fetching and publishing <object_prefix>

_meta _manifest %00%00 %00%01 %00%NN
L r ... L ... | T T
" ' NDN Daté} Packets ! : :
. [content-Type A v yPayloady v
] Timestam
- _p Manifest 1 2 N
+ |Content-Size

g.0. stream

* allows client to publish generalized objects as a stream
— (i.e. annotations per frame)

e fetching uses RDR to get latest data
e g.o.stream fetching/publishing will be part of CNL (to

be implemented by Nov) S
<seq #> _latest

_meta _manifest %00%00 %00%01 %00%NN <version #>
________ | e e e e
. " I' NDN Data Packets ! !
. |content-Type * * *Payload* *
: TimeStam,p Manifest 1 2 N <seqg#>
+ |Content-Size

ndnrtc stream

e custom namespace,
data + metadata

* will be implemented by
Peter and code [[

provided as a module ﬁ

aaaaaaaaa

eeeeeee

seg info

repo extension?

we want repo to be a stand-alone process running
24/7

producer “tells” repo:

— what data to fetch (prefix)

— how to fetch (fetching pattern)

repo makes fetched data immediately available for
incoming requests (under original prefix)

repo uses fast key-value store (exact name match) --
RocksDB

implementation

* running code by November:
— g.o. stream fetch pattern — CNL (JeffT)
— ndnrtc stream fetch pattern - “ndnrtc”-module (Peter)
— protocol extension - Xinyu?

* questions:

— shall we use existing repo code base?
* this will require adding new dependencies: RocksDB, CNL, ndn-cpp
* may be the fastest way to go

— or shall we create a separate codebase (project scaffold w/
dependencies can be provided by Peter quickly)

additional slide: storage benchmark

RocksDB. Insert op (microseconds) over insertion of Tmin 8k blobs
1000

750
500

250

0

RocksDB. Throughput (packets/sec) over insertion of Tmin 8k blobs

50000
40000
30000

20000

10000

