
what	is	needed	
•  store	generalized	objects	in	persistent	storage	
•  store	generalized	object	streams	in	persistent	
storage	

•  store	ndnrtc	streams	in	persistent	storage	
•  serve	stored	data	immediately	



generalized	object	

NDN Data Packets
Payload

<object_prefix>

_meta _manifest %00%00 %00%01 ... %00%NN

Content-Type
Timestamp

Content-Size
Other

Manifest 1 2 ... N

•  used	for	publishing	
annota7ons	

•  there	is	CNL	
implementa7on	for	
fetching	and	publishing	



g.o.	stream	
•  allows	client	to	publish	generalized	objects	as	a	stream	

–  (i.e.	annota7ons	per	frame)	
•  fetching	uses	RDR	to	get	latest	data	
•  g.o.	stream	fetching/publishing	will	be	part	of	CNL	(to	

be	implemented	by	Nov)	

NDN Data Packets
Payload

<seq #>

_meta _manifest %00%00 %00%01 ... %00%NN

<stream_prefix>

_latest

Content-Type
Timestamp

Content-Size
Other

Manifest 1 2 ... N

<version #>

<seq#>



ndnrtc	stream	
•  custom	namespace,	
data	+	metadata	

•  will	be	implemented	by	
Peter	and	code	
provided	as	a	module	

/<root>

ndnrtc/<api_version>

video audio

<stream name>

<timestamp> _meta

1080p 640 720p

d k _meta

<version #>

timestamp

640

720p

1080p

<segment #>

<seq #> <version #>

delta seq#

key seq#

rate

gop pos

seg info

coder

<segment #><segment #> _parity _manifest

Frame Payload <segment #> <version #>

FEC Payload <segment #>

Manifest Payload



repo	extension?	
•  we	want	repo	to	be	a	stand-alone	process	running	
24/7	

•  producer	“tells”	repo:	
–  what	data	to	fetch	(prefix)	
–  how	to	fetch	(fetching	paPern)	

•  repo	makes	fetched	data	immediately	available	for	
incoming	requests	(under	original	prefix)	

•  repo	uses	fast	key-value	store	(exact	name	match)	--	
RocksDB	



implementa7on	
•  running	code	by	November:	

–  g.o.	stream	fetch	paPern	–	CNL	(JeffT)	
–  ndnrtc	stream	fetch	paPern	–	“ndnrtc”-module	(Peter)	
–  protocol	extension	– Xinyu?	

•  ques7ons:	
–  shall	we	use	exis7ng	repo	code	base?	

•  this	will	require	adding	new	dependencies:	RocksDB,	CNL,	ndn-cpp	
•  may	be	the	fastest	way	to	go	

–  or	shall	we	create	a	separate	codebase	(project	scaffold	w/	
dependencies	can	be	provided	by	Peter	quickly)	



addi7onal	slide:	storage	benchmark	


