NDNLPv2

NDNLPV2 is a link protocol for Named Data Networking.

Goals

NDNLPv2 provides the following features:

o fragmentation and reassembly: fragment a network layer packet to fit in link MTU
o reliability: reduce packet loss

o failure detection: rapidly detect link failure and recovery

o integrity: prevent packet injection

o forwarding instruction: NACK, nexthop choice, cache control, etc

« packet information: for management and monitoring

NDNLPvV2 is designed to be a unified protocol that can be used on all kinds of links, including but not limited to: UNIX
sockets, Ethernet unicast/multicast, UDP unicast/multicast, TCP connections, WebSockets, etc.

NDNLPvV2 protocol operates as a link adaptation layer; it is above link layer and below network layer. Please, do not

call this "layer 2.5": there is no such notion in RFC protocols.

that
Different links need different features, or different designs of a feature. NDNLPv2 ensures all features are optional

and can be turned on or off per-link. NDNLPv2 also allows different designs of a feature to be adopted per-link.

NDNLPv2 deprecates and replaces: original NDNLP (aka NDNLPv1), NDNLPv1 multicast extension, NDNLPv1-TLV,
NDNLP-BFD, NFD LocalControlHeader.

NDNLP Packet Format

the
ANDNLPVZ packet adopts a Type-Length-Value (TLV) structure similar to NDN Packet Format.

NdnlpPacket ::= NDNLP-PACKET-TYPE TLV-LENGTH
NdnlpHeader
NdnlpFragment?

NdnlpHeader ::= NDNLP-HEADER-TYPE TLV-LENGTH
NdnlpSequence?

NdnlpHeaderExtension*

NdnlpSequence ::= NDNLP-SEQUENCE-TYPE TLV-LENGTH
fixed-width unsigned integer
NdnlpFragment ::= NDNLP-FRAGMENT-TYPE TLV-LENGTH
byte+
The called/a?

Outermost packet transmitted on a NDNLPv2 link is NdnlpPacket. In addition, a host MUST also accept bare network
packets (Interest and Data) on a NDNLPv2 link, which SHOULD be interpreted as a NdnlpPacket with empty header,
and have the bare network packet as its NdnlpFragment. However, such packets could be dropped later in processing if
the link configured to require a certain NDNLPv2 feature but a field is missing.

NdnlpSequence contains a sequence number that is useful to multiple features. This field is REQUIRED if any enabled
feature is using sequence numbers, otherwise lt sl%)PTIONAL.TgﬁQNidth of the sequence is determined on a per-link
basis; 8-octet is recommended for today's links. A host MUST generate consecutive sequence numbers for outgoing
packets on the same face.

NdnlpFragment contains a fragment of one or more network layer packets. The fragmentation and reassembly feature
defines how NdnlpFragment field is constructed and interpreted. When fragmentation and reassembly feature is
disabled, the NdnlpFragment field contains a whole network layer packet. NdnlpFragment is OPTIONAL; NdnlpPacket
without NdnlpFragment is an IDLE packet.

NdnlpHeaderExtension is a repeatable optional structure in NdnlpHeader. NDNLPv2 features MAY add new header
field by extending the definition of NdnlpHeaderExtension. Header extension fields can appear in any order. Unless
otherwise specified, the same extension field shall appear at most once at-an NdnlpHeader. in a

If an incoming NdnlpPacket contains unknown fields, the receiver MUST drop the packet, but SHOULD NOT consider
the link has an error. Note: if a field is recognized but the relevant feature is disabled, it's-not an "unknown field".

itis
Indexed Fragmentation

do
Indexed fragmentation provides fragmentation and reassembly feature on datagram links that does not guarantee in-

order delivery.

This feature defines two header fields:

NdnlpHeaderExtension ::= .. | NdnlpFragIndex | NdnlpFragCount
NdnlpFragIndex ::= NDNLP-FRAG-INDEX-TYPE TLV-LENGTH
nonNegativelInteger
NdnlpFragCount ::= NDNLP-FRAG-COUNT-TYPE TLV-LENGTH
nonNegativeInteger
The

Sender slices a network layer packet into one or more fragments. The size of each fragment MUST be small enough so
that the NdnlpPacket carrying every fragment is belew-link MTU. It is RECOMMENDED that all except the last
fragments have the same size. smaller than the link MTU?

NdnlpFragCount field indicates the number of fragments belonging to the same network layer packet. It MUST be the
same in all fragments belonging to the same network layer packet.

NdnlpFragindex field indicates the zero-based index of the current packet. It MUST be assigned consecutively for
fragments belonging to the same network layer packet, starting from zero. The feature is named "indexed
fragmentation" because every fragment is given an index in this field.

NdnlpSequence field is REQUIRED when this feature is enabled. Fragments belonging to the same network layer
packet MUST be assigned consecutive sequence numbers, in the same order with NdnlpFragindex.

For example, a 5000-octet network layer packet may be sliced as illustrated:

Focooccoococoooo Pocooccoocoococoo + fbocococoococoooo Focooccoococoooo +
NDNLPv2	Fragment		NDNLPv2	Fragment
seq=8801			seq=8802	
FragIndex=0	[0:1400]		FragIndex=1	[1400:2800]

| FragCount=4 | | FragCount=4 |

fococcococcooooo fhooccocococcocooos + fhoocccococcccoooo fbococcococcooooo +
Focoocoocooooo Pocoococcococaa + fbocooccooocoooo Focooccococoooo +
NDNLPv2	Fragment		NDNLPv2	Fragment
seq=8803			seq=8804	
FragIndex=2	[2800:4200]		FragIndex=3	[4200:5000]
FragCount=4			FragCount=4	
Fommmmmmeaaao o Fommmmeee e + dommmmeea e Fommmmmeeaaaa o +

Receiver stores fragments in a PartialMessageStore data structure, which is a collection of PartialMessages, indexed
by Messageldentifier=NdnlpSequence-NdnlpFragindex. Since both NdnlpSequence and NdnlpFragindex are assigned
consecutively,tplgssageIdentifier should be the sequence number of the first fragment of a network layer packet. After
collecting all fragments belonging to a network layer packet, the receiver joins them together, and delivers the complete
network layer packet to upper layer.

The receiver SHOULD maintain a reassembly timer in each F_’IgrtiaIMessage, which is reset each time a new fragment is
received. If this timer expires, the PartialMessage is dropped. Se%ault duration for this timer is 500ms.

If this feature is enabled but NdnlpFraglindex is missing, it is implied as zero. If this feature is enabled but
NdnlpFragCount is missing, it is implied as one. If this feature is disabled but either header field is received, the packet
MUST be dropped.

Unless otherwise specified, header extension fields from other features shall only appear on the first fragment. If a field
appear on a non-first fragment, it MUST be ignored.

appears

Network NACK

A network NACK is a forwarding instruction from upstream to downstream that indicates the upstream is unable to
satisfy an Interest.

This feature defines a header field:

NdnlpHeaderExtension ::= .. | NdnlpNack

NdnlpNack ::= NDNLP-NACK-TYPE TLV-LENGTH
Nack?

Nack ::= DuplicateNack | GiveUpNack
DuplicateNack ::= DUPLICATE-NACK-TYPE TLV-LENGTH(=0)

GiveUpNack ::= GIVE-UP-NACK-TYPE TLV-LENGTH(=0)

that
NdnlpNack header field indicates an Interest is a NACK, and is not a normal Interest. The receiver MUST NOT process

the packet as an Interest.

A reason element, such as DuplicateNack or GiveUpNack, MAY appear under NdnlpNack to indicate why the NACK is
transmitted. Although all defined reason elements are empty, a reason element to be defined in the future may be non-
empty and carry an optional suggestion on what the downstream should do. A receiver MUST be prepared to process a
NACK without a reason element. If a NACK contains an unknown reason element, the receiver MUST treat this NACK
as a NACK without reason, and MUST NOT drop the packet.

froococooocoooooooooos hooocoooooooooooo +

| NDNLPv2 | Interest |
| | Name=/example |
| +-NdnlpNack----- + | Nonce=35 [
| | DuplicateNack | | |
e + | |
Fococcoocooocoosoooc fboccococoosocoosoo +

that
DuplicateNack indicates the upstream has detected a duplicate Nonce in the Interest sent by the downstream.

that
GiveUpNack indicates the upstream has attempted to forward the Interest, but no Data can be retrieved after
exhausting all available routes.

It is
It's RECOMMENDED to enable this feature on every link. If this feature is disabled but NdnlpNack is received, the
packet MUST be dropped.

NdnlpNack header field is permitted only on a NdnlpPacket carrying an Interest. When NdnlpNack appears on a
NdnlpPacket carrying a network layer packet other than an Interest, the packet MUST be dropped.

Consumer Controlled Forwarding

Consumer controlled forwarding allows a local consumer application to explicitly specify the nexthop face to forward an
Interest.

This feature defines a header field:

NdnlpHeaderExtension ::= .. | NextHopFaceld
NextHopFaceId ::= NEXT-HOP-FACE-ID-TYPE TLV-LENGTH
nonNegativelInteger

NextHopFaceld indicates the nexthop Faceld to which an Interest should be forwarded. A local consumer application
MAY add this field to an NdnlpPacket carrying an Interest. The local forwarder SHOULD follow this instruction and
forward the Interest to the specified nexthop. ContentStore lookup SHOULD be bypassed unless NextHopFaceld
equals a special Faceld that represent the ContentStore.

This feature is designed to be used on local faces only. It SHOULD NOT be enabled on non-local faces. If this feature is
enabled but NextHopFaceld refers to a non-existent face, the Interest SHOULD be processed as if there is no available
route. If this feature is disabled but NextHopFaceld is received, the packet SHOULD be dropped, or this field MUST be
ignored.

NextHopFaceld header field is permitted only on a NdnlpPacket carrying an Interest, from an application to the
forwarder. When NextHopFaceld appears on a NdnlpPacket carrying a network layer packet other than an Interest, the
packet MUST be dropped. When NextHopFaceld is received by an application from a forwarder, this field MUST be

ignored. ; 5
respects / uses 7 the

Implementation note: Currently, NFD honors NextHopFaceld only if client-control strategy is chosen for the
namespace. In addition, ContentStore lookup will not be bypassed. This limitation may be lifted in a future version of
NFD.

Local Cache Policy

Local cache policy feature allows a local producer application to instruct ContentStore on whether and how to cache a
Data packet.

This feature defines a header field:

NdnlpHeaderExtension ::= .. | CachingPolicy

CachingPolicy ::= CACHING-POLICY-TYPE TLV-LENGTH
NoCache

NoCache ::= NO-CACHE-TYPE TLV-LENGTH(=0)

CachingPolicy contains a sub-element that gives a suggestion to the ContentStore. The ContentStore MAY follow this

suggestion.

A policy element, such as NoCache, MUST appear under CachingPolicy to give a suggestion to the ContentStore.
Although all defined policy elements are empty, a policy element to be defined in the future may be non-empty and
carry additional arguments. If CachingPolicy field contains an unknown policy element, the forwarder SHOULD drop the
packet.

| NDNLPv2

I
| +-CachingPolicy-
| | NoCache

+
| Data [
| Name=/example |
| Content=xxxx |
I
I
+

— +

Signature=xx

NoCache indicates the ContentStore SHOULD NOT admit the Data packet.

This feature is designed to be used on local faces only. It SHOULD NOT be enabled on non-local faces. If this feature is
disabled but CachingPolicy is received, this field MUST be ignored.

CachingPolicy header field is permitted only on a NdnlpPacket carrying a Data packet, from an application to the
forwarder. When CachingPolicy header field appears on a NdnlpPacket carrying a network layer packet other than a
Data packet, the packet MUST be dropped. When CachingPolicy is received by an application from a forwarder, this
field MUST be ignored.

Incoming Face Indication

Incoming face indication feature allows the forwarder to inform local applications about the face on which a packet is
received.

This feature defines a header field:

NdnlpHeaderExtension ::= .. | IncomingFaceId
IncomingFaceId ::= INCOMING-FACE-ID-TYPE TLV-LENGTH
nonNegativeInteger

IncomingFaceld contains the Faceld from which the network layer packet is received. When this feature is enabled,

the forwarder SHOULD attach this field to every network layer packet going to a local application, and indicate the
Faceld on which this network layer packet is received by the forwarder. If a Data packet comes from the ContentStore,
IncomingFaceld SHOULD contain a special Faceld that represents the ContentStore, rather than the Faceld on which
this Data packet was originally received. Even if this feature is enabled, the application MUST be prepared to receive a
packet without IncomingFaceld field.

This feature is designed to be used on local faces only. It SHOULD NOT be enabled on non-local faces.

IncomingFaceld header field is permitted only on a NdnlpPacket from the forwarder to an application. When
IncomingFaceld is received by the forwarder from an application, this field MUST be ignored.

Type Code Assignments

type code (decimal) code (hexadecimal)
NdnlpPacket 100 0x64
NdnlpHeader 80 0x50
NdnlpSequence 81 0x51
NdnlpFragment 82 0x52
NdnlpFragindex 83 0x53
NdnlpFragCount 84 0x54
NdnlpNack 85 0x55
DuplicateNack 86 0x56
GiveUpNack 87 0x57
NextHopFaceld 88 0x58
CachingPolicy 89 0x59
NoCache 90 Ox5a
IncomingFaceld 91 0x5b

NDNLPv2.md hosted with ® by GitHub view raw

