
miniNDN with ndn-cxx: some use cases

Matteo Bertolino

October 14, 2016

matteo.bertolino@eurecom.fr

Contents

1 Recommendations 2

2 How to send personalized NACKs from application 3

3 Creating a certificate chain, publishing the certificates through
repo-ng, signing the data and verifying the chain 5

4 How to sign and to verify a signed interest 10

1

1 Recommendations

• Recommendation 1: miniNDN does not run well with ubuntu kernel
version too recent. For my experience, I suggest you to use the version
3.16. Some mininet error examples could be RTNETLINK error or Error:
gave up after three attempts.

• Recommendation 2: if, at the beginning, you notice an error on the
port 6633, just run: sudo tcpkill -9 port 6633 for at least 30 seconds.
If the problem persists, just run the above command other times until
miniNDN starts correctly.

• Recommendation 3: Another possible error, during the simulation, is
something like no such forwarder connection. If so, just ctrl+c miniNDN
and restart it.

• Recommendation 4: Another possible error, during the simulation, is
something like private key does not exists. If so, ctrl+c miniNDN like the
recommendation 3, and do not delete the node folders in the /tmp folder.
I noticed that it happens if the node folder are created for the first time
in /tmp. If you noticed this error while or after built the certificate chain,
you should reinstall all the certificates. Further details later.

2

2 How to send personalized NACKs from appli-
cation

Suppose the following use case: there is a consumer, a producer and the producer
desires, for any reason, seningd an application NACK to the consumer. This
NACK should have a reason different from the known ones (CONGESTION,
NO ROUTE, DUPLICATE, etc) because, for example, it must be treated in
a particular way by an NDN entity (the receiver application or the NFD for
example. This latter could understand the application nack because it uses
the ndn-cxx too, differently from ndn-cpp). Just to perform an example (not
so smart): if a producer gets care that a particular host is sending too many
interests, it could inform him that in a short period its packets will be dropped
if the rate does not become lower, and it could reach the goal sending a Nack
with a reason ”TOO HIGH”. Let’s see how to do:

1- Add the nack reason in /mini-ndn/ndn-cxx/src/lp/nack-header.hpp:

enum class NackReason {
NONE = 0 ,
CONGESTION = 50 ,
DUPLICATE = 100 ,
NOROUTE = 150 ,
TOO HIGH = 174

} ;

2- Adding the new reason in the definition of operator <<and modifying op-
portunely the getReason method in /mini-ndn/ndn-cxx/src/lp/nack-header.cpp:

std : : ostream&
operator<<(std : : ostream& os , NackReason reason) {

switch (reason) {
case NackReason : :CONGESTION:

os << ”Congest ion ” ;
break ;

case NackReason : :DUPLICATE:
os << ”Dupl i cate ” ;
break ;

case NackReason : :NOROUTE:
os << ”NoRoute” ;
break ;

case NackReason : : TOO HIGH:
os << ”TooHighInterestRate ” ;
break ;

default :
os << ”None” ;
break ;

}
return os ;

}

NackReason NackHeader : : getReason () const {
switch (m reason) {
case NackReason : :CONGESTION:
case NackReason : :DUPLICATE:
case NackReason : :NOROUTE:
case NackReason : : TOO HIGH:

return m reason ;
default :

return NackReason : :NONE;
} }

3

3- Sending a NACK with reason TOO HIGH from the application:

i f (/∗ something ∗/) {
lp : : Nack outNack (i n t e r e s t) ;
lp : : NackReason nack reason = lp : : NackReason : : TOO HIGH;
outNack . setReason (nack reason) ;
myFace . put (outNack) ;

}

4- Managing the NACK at any NDN entity (example: the strategy of the
NFD):

void AnyStrategy : : a f terRece iveNack (const Face& inFace ,
const lp : : Nack& nack ,

const shared ptr<p i t : : Entry>& pitEntry) {
i f (nack . getReason()==lp : : NackReason : : TOO HIGH) {

//do something
}

}

//NB: for any reason, the above if is wrong during the compilation phase.
I do not know why, in order to test the application NACK so defined, if you get
a compilation error, just exclude all the other nack types, for example:

i f (nack . getReason () != lp : : NackReason : :NONE &&
nack . getReason () != lp : : NackReason : :NOROUTE &&

. . .)

4

3 Creating a certificate chain, publishing the
certificates through repo-ng, signing the data
and verifying the chain

Use case - our topology is composed by 5 nodes: a consumer (CS), a pro-
ducer (PR), an intermediate gateway (GW), a root authority (AR) and a sub-
authority (A1). The client expresses an interest for a certain data that the
producer is able to satisfy. The producer signs the data packet and it sends
it. The producer certificate is signed by the sub-authority A1, the certificate of
A1 is signed by the root authority AR. The Consumer CS trusts just in AR.
So, when CS receives a packet for PR, it needs to verify first of all the PR’s
certificate, then the A1’s certificate. The topology file I used is this one:

[nodes]
c s : nfd−log−l e v e l=DEBUG
pr : nfd−log−l e v e l=DEBUG
ar : nfd−log−l e v e l=DEBUG
gw : nfd−log−l e v e l=DEBUG
a1 : nfd−log−l e v e l=DEBUG
[l i n k s]
c s : gw delay=10ms
ar : gw delay=10ms
pr : gw delay=10ms
a1 : gw delay=10ms

The string nfd-log-level=DEBUG guarantees the generation of the node file
/tmp/node/node.log, that is very useful to see what’s happened. Then, let’s
see and comment the main steps that we need in order to build a certificate
chain. Note that this should be done ”offline”, before the simulation, and it is
not necessary repeating it entirely each time. In this scenario, ar represents the
/root domain, the sub-authority the sub-domain /root/site1 and the producer
/root/site1//site2.

1. ar ndnsec-keygen /root — tee root.ndncert — ndnsec-cert-install - : the
root authority generates its root certificate and install it.

2. ar cp root.ndncert ../cs : the consumer trusts in ar, so it must have a copy
of its certificate as trust anchor.

3. a1 ndnsec-keygen /root/site1 >site1.req : the sub-authority generates a
pair of keys and it prepares a request for ar’s signature.
a1 cp site1.req ../ar/
ar gedit site1.req : Note that if the next command returns an input error,
probably it happened that there are some extra-characters in the request
file. If it happens, just eliminates the first characters of the request, typi-
cally 4-5 (you will notice about the true start of the file).

4. ar ndnsec-certgen -N /root/site1 -s /root site1.req >site1.ndncert The root
authority generates and signs the sub-authority certificate, starting from
the request with the key that the sub-authority previously provided to it.
ar cp site1.ndncert ../a1/

5. At this time, both root-authority and sub-authority install the sub-authority
certificate:

5

a1 ndnsec-cert-install -f site1.ndncert
ar ndnsec-cert-install -f site1.ndncert
Now it is necessary repeating the same steps between the producer and
a1. Here a1 has the same role of ar in the previous case, while pr has the
same role that a1 had before. Since they are the same steps already seen,
I will not comment it.

6. pr ndnsec-keygen /root/site1/site2 >site2.req

7. pr cp site2.req ../a1/

8. a1 ndnsec-certgen -N /root/site1/site2 -s /root/site1 site2.req >site2.ndncert

9. a1 gedit site2.ndncert (if necessary)

10. a1 cp site2.ndncert ../pr/

11. pr ndnsec-cert-install -f site2.ndncert

12. a1 ndnsec-cert-install -f site2.ndncert

The next step is announcing the prefixes with nlsrc, for example.

• pr nlsrc advertise /root/site1/site2

• a1 nlsrc advertise /root/site1/KEY

NB: if, after this command, you obtain private key does not exist er-
ror, just re-install site1 certificate (a1 ndnsec-cert-install -f site1.ndncert),
then re-type the advertise command.

• ar nlsrc advertise /root/KEY

NB: if, after this command, you obtain private key does not exist er-
ror, just re-install root certificate (ar ndnsec-cert-install -f root.ndncert),
then re-type the advertise command.

At this point is possible verifying that all was distributed properly, with the
command NODE ndnsec list -c.
Running it on the producer and on the two authorities, we should able to see
something or similar:

On the Root Authority:

∗ / root
+ −>∗ / root /ksk−1475161471091
+ −>∗ / root /KEY/ksk−1475161471091/ID−CERT/%FD%00%00%01Wvy%BB%E8

/ root / s i t e 1
+ −>∗ / root / s i t e 1 /ksk−1475161481253
+ −>∗ / root /KEY/ s i t e 1 /ksk−1475161481253/ID−CERT/%FD%00%00%01Wvz5%E2

On the sub-authority:

/ root / s i t e 1
+ −>∗ / root / s i t e 1 /ksk−1475161481253
+ −>∗ / root /KEY/ s i t e 1 /ksk−1475161481253/ID−CERT/%FD%00%00%01Wvz5%E2

/ root / s i t e 1 / s i t e 2
+ −>∗ / root / s i t e 1 / s i t e 2 /ksk−1475161530970
+ −>∗ / root / s i t e 1 /KEY/ s i t e 2 /ksk−1475161530970/ID−CERT/%FD%00%00 [. . .]

6

On the producer:

/ root / s i t e 1 / s i t e 2
+−>∗ / root / s i t e 1 / s i t e 2 /ksk−1475161530970
+−>∗ / root / s i t e 1 /KEY/ s i t e 2 /ksk−1475161530970/ID−CERT/%FD%00%00 [. . .]

Now it is possible launching the applications (producer, authorities, con-
sumer, gateway if desired) on each node: let’s see the main features of these
application.

Producer: the producer is a normal producer that sign the data with its
own identity before sending.

private :
Face myFace ;
KeyChain myKeyChain ;

void
on In t e r e s t (const I n t e r e s t F i l t e r& f i l t e r , const I n t e r e s t& i n t e r e s t)
{

// [. . .]
shared ptr<Data> dataPacket = make shared<Data>() ;
dataPacket−>setName (dataName) ;
dataPacket−>setContent (reinterpret cast<const u i n t 8 t∗>

(content . c s t r ()) , content . s i z e ()) ;

Name prodIdent i ty (”/ root / s i t e 1 / s i t e 2 ”) ;
// the same used fo r the c e r t i f i c a t e d i s t r i b u t i o n

myKeyChain . s i gnByIdent i ty (∗ data , p rod Ident i ty) ;
myFace . put (∗ data) ;

// [. . .]
}

Consumer: the consumer should express an Interest and calling the method
validate. This latter has a reference for two callbacks, the first one (onDataVal-
Success) is called if the verification was entirely fine, the second one (onDataVal-
idationFail) if the validation failed. Let’s see the code:

void
run ()
{

I n t e r e s t i n t e r e s t (Name(”/ root / s i t e 1 / s i t e 2 ”)) ;
i n t e r e s t . s e t I n t e r e s t L i f e t im e (time : : m i l l i s e c ond s (1 0 0 0)) ;
i n t e r e s t . setMustBeFresh (true) ;
myFace−>e xp r e s s I n t e r e s t (i n t e r e s t ,

bind(&Consumer : : onData , this , 1 , 2) ,
bind(&Consumer : : onTimeout , this , 1)) ;

myFace−>processEvents () ;
}

void
onData (const I n t e r e s t& i n t e r e s t , const Data& data)
{

std : : cout<< ” Ca l l i ng va l i d a t e on ” << i n t e r e s t << std : : endl ;
m val idator−>va l i d a t e (data , bind(&Consumer : : onDataValSuccess ,

this , 1) , bind(&Consumer : : onDataVal idat ionFai led , this , 1 , 2)) ;
}

private :
void
onDataVal idat ionFai led (const shared ptr<const Data>& data ,

const std : : s t r i n g& f a i l u r e I n f o)
{

7

std : : cout << ” f a i l e d ” << f a i l u r e I n f o << std : : endl ;
}

void
onDataValSuccess (const ndn : : shared ptr<const ndn : : Data>& data)
{

std : : cout<< ”Val idate OK ” << std : : endl ;
s td : : s t r i n g message (reinterpret cast<const char∗>

(data−>getContent () . va lue ()) ,
data−>getContent () . v a l u e s i z e ()) ;

s td : : cout << ”msg : ” << message << std : : endl ;
}

What is the m validator object? The verification of both interest and data’s
packets could be done through a Validator, that is a virtual class that imple-
ments the method CheckPolicy, one override for data and one for interest. It
checks if both the packet and the signer respect some policies and if their sig-
nature could be verified. There are two types of Validator, one based on a
configuration file and one based on the regex, in-code. For this example I will
use the class ValidatorRegex, for the next section (How to validate an interest)
I will use the ValidatorConfig class.
So, the class consumer should #include <ndn-cxx/security/validator-regex.hpp>
header and it should define how to validate the data packets that it receives.

private :
shared ptr<Face> myFace ;
shared ptr<ValidatorRegex> m val idator ;

void i n i t ()
{

myFace = make shared<Face>() ;
m va l idator = make shared<ValidatorRegex >(∗myFace) ;

m val idator−>addDataVer i f i cat ionRule (ndn : : make shared
<ndn : : SecRuleRelat ive >(”ˆ(<>∗)$” ,
”ˆ([ˆ<KEY>]∗)<KEY>(<>∗)<ksk−.∗><ID−CERT>$” ,
”>” , ”\\1” , ”\\1\\2” , true)) ;

ndn : : shared ptr<ndn : : I d e n t i t yC e r t i f i c a t e> anchor =
ndn : : i o : : load<ndn : : I d e n t i t yC e r t i f i c a t e >(”/tmp/ cs / root . ndncert ”) ;

i f (static cast<bool>(anchor))
{

BOOST ASSERT(anchor−>getName () . s i z e () >= 1) ;

m val idator−>addTrustAnchor (anchor) ;
}

else {
throw ” i n v a l i d c e r t i f i c a t e ” ;

}
}

Briefly (you can find more details about how to write a validator on here):
The first parameter of the method addDataVerificationRule is a regex that
specifies the conditions on the data name, the second is for the conditions on
the KeyLocator field, the last two explain how to constrain the KeyLocator
using the information extracted from both Data packet and KeyLocator name.
I advice to read the document linked to well understand the mechanism, for
our experiments is enough knowing that with this regex we can match all the

8

http://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html

identity certificates. Then, there is a part concerning the anchor. An anchor is
an authority in which the consumer trust, so we linked the position of the root
certificate that we copied in the point number 2 of the commands list, above.
That means: the consumer cs trust in the root authority ar, and it has a copy of
root’s certificate in the folder /tmp/cs. When the consumer meets a certificate
signed by ar, it will immediately trust it.

The authorities - ar and a1: The only purpose of the authorities when
the scenario runs is just distributing the certificates that they signed offline.
In order to implement a scalable certificate distribution, I used the method
based on repo-ng, the implementation of the NDN Repository. Another possible
method is using ndns. Then, first of all it is necessary having a look and, if
necessary, modifying the configuration file on repo-ng, that has to be stored in
/usr/local/etc/ndn folder. Following, an example of this file for this scenario.

repo
{

data {
; l i s t o f Data p r e f i x e s to register
p r e f i x ”ndn : / root /KEY”
p r e f i x ”ndn : / root / s i t e 1 /KEY”

}
command {

; l i s t o f command p r e f i x e s to register
p r e f i x ”ndn : / root /KEY”
p r e f i x ”ndn : / root / s i t e 1 /KEY”

}
s t o rage {

method ” s q l i t e ” ; j u s t s q l i t e i s a l lowed now
path ”/tmp/ r ” ; where data w i l l s t o r ed
max−packets 100000 ;max number o f packets a l lowed to be s to r ed

}
t c p bu l k i n s e r t {

; S ec t i on to enable TCP bulk i n s e r t c a p ab i l i t y
;We w i l l use this c ap ab i l i t y to i n s e r t the c e r t i f i c a t e s in repo
host ” l o c a l h o s t ”
port 7376

}
va l i d a t o r {

t rus t−anchor
{

type any
}

}
}

The next step is launching repo-ng in both ar and a1 nodes, and publishing
the certificates:

a1 /home/ b e r t o l i n o /Desktop/mini−ndn/repo−ng/ bu i ld /ndn−repo−ng &
ar /home/ b e r t o l i n o /Desktop/mini−ndn/repo−ng/ bu i ld /ndn−repo−ng &
ar base64 −d s i t e 1 . ndncert | nc l o c a l h o s t 7376
a1 base64 −d s i t e 2 . ndncert | nc l o c a l h o s t 7376
ar /home/ b e r t o l i n o /Desktop/mini−ndn/repo−ng/ bu i ld / t o o l s / repo−ng− l s

Finally, just run the producer application, the gateway application if any, and
the consumer application. The last command is to verify that the publication
procedure performed well. This should work, if not the log files could help.

9

4 How to sign and to verify a signed interest

This scenario is really similar to the precedent, so I will not repeat the comments
already done, for each command. I suggest you to read the previous section
before reading this one, just to have a more clear vision. However, in this
scenario the topology is composed by a producer P, a consumer C, an authority
R and an intermediate gateway GW. Both producer and consumer trust in the
authority, that signs their certificates. The Consumer C send a signed interest
that P is able to satisfy. Then P verify C’s certificate, if it is valid it prepares
and it signs a data packet. This data packet arrives to C that validates it and,
if all is OK, the data are displayed.

The topology file used is the following one:

[nodes]
c : nfd−log−l e v e l=DEBUG
p : nfd−log−l e v e l=DEBUG
r : nfd−log−l e v e l=DEBUG
gw : nfd−log−l e v e l=DEBUG
[l i n k s]
c : gw delay=10ms
r : gw delay=10ms
p : gw delay=10ms

Then, it is necessary repeating the certificate distribution. Since it is very
similar to the previous case, please refer to it for the comments about the
commands. They could be useful, with the recommendations, whether an error
occurs.

Differently from the previous section, where a root authority signed the
certificate of a sub-authority that signed the producer’s certificate, here the
root authority signs both the producer’s and consumer’s certificate. The steps
are:

1. r ndnsec-keygen /root — tee root.ndncert — ndnsec-cert-install -

2. r cp root.ndncert ../p

3. p ndnsec-keygen /root/site1 >site1.req

4. p cp site1.req ../r/

5. r ndnsec-certgen -N /root/site1 -s /root site1.req >site1.ndncert

6. r cp site1.ndncert ../p

7. p ndnsec-cert-install -f site1.ndncert

8. r ndnsec-cert-install -f site1.ndncert

9. Repeat the steps 2-8 substituting every p with c and every site1 with
site2

10. p nlsrc advertise /root/site1 (see previous section if private key does not
exist error appears)

11. r nlsrc advertise /root/KEY (see previous section if private key does not
exist error appears)

10

Then, exactly like before, you could launch repo-ng on the authority node
and publish the two certificates:

repo
{

data {
; l i s t o f Data p r e f i x e s to register
p r e f i x ”ndn : / root /KEY”

}
command {

; l i s t o f command p r e f i x e s to register
p r e f i x ”ndn : / root /KEY”

}
s t o rage {

method ” s q l i t e ” ; j u s t s q l i t e i s a l lowed now
path ”/tmp/ r ” ; where data w i l l s t o r ed
max−packets 100000 ;max number o f packets a l lowed to be s to r ed

}
t c p bu l k i n s e r t {

; S ec t i on to enable TCP bulk i n s e r t c a p ab i l i t y
;We w i l l use this c ap ab i l i t y to i n s e r t the c e r t i f i c a t e s in repo
host ” l o c a l h o s t ”
port 7376

}
va l i d a t o r {

t rus t−anchor
{

type any
}

}
}

r /home/ b e r t o l i n o /Desktop/mini−ndn/repo−ng/ bu i ld /ndn−repo−ng &
r base64 −d s i t e 1 . ndncert | nc l o c a l h o s t 7376
r base64 −d s i t e 2 . ndncert | nc l o c a l h o s t 7376
r /home/ b e r t o l i n o /Desktop/mini−ndn/repo−ng/ bu i ld / t o o l s / repo−ng− l s

The consumer: the consumer this time is simpler than the producer, be-
cause it should verify the data, like the previous case, and just signing the inter-
est. In order to validate the data, this time I used a ValidatorConfig object and
not a ValidatorRegex, so I included <ndn-cxx/security/validator-config.hpp>
header. The main important parts of the code are:

private :
shared ptr<Face> myFace ;
shared ptr<Val idatorConf ig> myValidator ;
KeyChain myKeyChain ;

public :
void i n i t ()
{

myFace = make shared<Face>() ;
myValidator = make shared<Val idatorConf ig >(∗myFace) ;
myValidator−>load (”/home/ b e r t o l i n o /Desktop/mini−ndn/ ndn u t i l s /

va l i da to r−con f i g−base . conf ”) ;
}

void
run ()
{
/ [. . .]

I n t e r e s t i n t e r e s t (Name(”/ root / s i t e 1 ”)) ;

11

i n t e r e s t . s e t I n t e r e s t L i f e t im e (time : : m i l l i s e c ond s (4 0 0 0)) ;
i n t e r e s t . setMustBeFresh (true) ;
Name consumerId (”/ root / s i t e 2 ”) ;
myKeyChain . s i gnByIdent i ty (i n t e r e s t , consumerId) ;
myFace−>e xp r e s s I n t e r e s t (i n t e r e s t ,

bind(&Consumer : : onData , this , 1 , 2) ,
bind(&Consumer : : onTimeout , this , 1)) ;

myFace−>processEvents () ;
}

Then the consumer is equal to the previous one. It should call the validate
function and it must define the callbacks whether the data is or is not valid.
Here, we need a configuration file for the validator, that we loaded in the code.
The file is the following one:

r u l e
{

id ”c r u l e ”
for data
f i l t e r
{

type name ; cond i t i on on data name
name / root
r e l a t i o n i s−pre f i x−o f

}
checker
{

type h i e r a r c h i c a l
s i g−type rsa−sha256

}
}
t rus t−anchor
{

type f i l e
f i l e −name /tmp/c/ root . ndncert

}

Conceptually it is similar to the ValidatorRegex, but using a configuration
file is more user friendly. Please, if you want more details about each field
meaning, just consult the link provided in the previous section.

The producer: the producer is a little more complicated, because it must
be able to verify both interests and data. Indeed it needs to verify the interest
of the consumer, but verifying the interest involved in requesting the consumer’s
certificate, that is a data packet signed by the authority. So the configuration
file for the producer validator should have at least two rules! Notice that the
interest signed carries the information about signature in the name itself, by
standard. The configuration file for the producer is:

r u l e
{

id ”p ru l e ”
for i n t e r e s t
f i l t e r
{

type name
name / root / s i t e 1
r e l a t i o n i s−pre f i x−o f

}
checker
{

type customized

12

s i g−type rsa−sha256
key−l o c a t o r {

type name
name / root /KEY/
r e l a t i o n i s−pre f i x−o f

}
}

}

r u l e
{

id ”p1 ru l e ”
for data
f i l t e r
{

type name
name / root
r e l a t i o n i s−pre f i x−o f

}
checker
{

type h i e r a r c h i c a l
s i g−type rsa−sha256

}
}

t rus t−anchor
{

type f i l e
f i l e −name /tmp/p/ root . ndncert ;

}

While the code is identical to the previous one, except for the onInterest
method and the ValidatorConfig file

public :
void i n i t ()
{

myFace = make shared<Face>() ;
myValidator = make shared<Val idatorConf ig >(∗myFace) ;
myValidator−>load (”/home/ b e r t o l i n o /Desktop/mini−ndn/ ndn u t i l s

/ va l i da to r−con f i g−i n t e r e s t . conf ”) ;
}

void
run ()
{

myFace−>s e t I n t e r e s t F i l t e r (”/ root / s i t e 1 ” ,
bind(&Producer : : on In te r e s t , this , 1 , 2) ,
Reg i s t e rPr e f i xSucc e s sCa l l ba ck () ,
bind(&Producer : : onReg i s t e rFa i l ed , this , 1 , 2)) ;

myFace−>processEvents () ;
}

private :
void
on In t e r e s t (const I n t e r e s t F i l t e r& f i l t e r , const I n t e r e s t& i n t e r e s t)
{

myValidator−>va l i d a t e (i n t e r e s t , bind(&Producer : : sendData ,
this , 1) , bind(&Producer : : on In t e r e s tVa l i da t i onFa i l ed ,

this , 1 , 2)) ;
}

13

void
on In t e r e s tVa l i d a t i onFa i l e d (const shared ptr<const I n t e r e s t>&

in t e r e s t , const std : : s t r i n g& f a i l u r e I n f o)
{

std : : cout << ” f a i l e d ” << f a i l u r e I n f o << std : : endl ;
}

void
sendData (const ndn : : shared ptr<const ndn : : I n t e r e s t>& i n t e r e s t)
{

// [. . .]
}

private :
shared ptr<Face> myFace ;
shared ptr<Val idatorConf ig> myValidator ;
KeyChain myKeyChain ;

Finally, just launch the producer and consumer application (and gateway
application, if any) and run the simulation.

14

	Recommendations
	How to send personalized NACKs from application
	Creating a certificate chain, publishing the certificates through repo-ng, signing the data and verifying the chain
	How to sign and to verify a signed interest

