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ABSTRACT

Named Data Networking (NDN) is a general purpose network layer
protocol which offers a set of rich functionality: in-network stor-
age, multi-path forwarding, multicast delivery, and data-centric se-
curity. Above the network layer, system libraries simplify applica-
tion developers’ tasks by providing an easy to use yet powerful API
to utilize the functions enabled by NDN. This paper presents the
design of a Consumer / Producer programming interface, together
with several mechanisms, that supports application level framing
via NDN’s data retrieval protocols to make NDN application pro-
gramming easier and faster.
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1. INTRODUCTION

Today’s Internet architecture stands on IP — a universal net-
work layer designed to create a point-to-point communication net-
work where packets are delivered to specific destinations, enabling
process-to-process communication. This was a premise for intro-
ducing the concept of the socket, which binds a running process to a
communication channel, and represents a container for the current
state of data transfer between two end processes [1,2].

Over time the Internet has evolved from a network that inter-
connects hosts to a network that interconnects information objects
broadly defined; these objects range from movie files, Facebook
content, twitter messages, to sensor data and authenticated device
actuation commands. This fundamental change in its usage sug-
gests that the Internet’s universal network layer would be much
more organic to use a data dissemination protocol that can natively
work with information objects instead of communication endpoints.

As anewly proposed architecture to meet this new usage, Named
Data Networking (NDN) replaces IP’s host-based addressing scheme
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by names of information objects in moving packets through the net-
work [3,4,5]. In an NDN network, consumers send Interest pack-
ets carrying application-level names to request information objects,
and the network returns the requested Data packets reversing the
path of the Interests. NDN secures data directly with a publicly
verifiable signature, and with encryption as needed (Section 2).

As explained in [6], network applications work with Applica-
tion Data Units (ADU) — units of data represented in a most suit-
able form for each given use-case. For example, a video playback
application typically handles data in the unit of video frames; a
multi-user game’s ADUs are objects representing users’ current
status; and for an intelligent home application, ADUs may rep-
resent sensor readings. NDN enables applications to communicate
using ADUs.

As a new way of doing networking, NDN introduces new design
patterns for applications. To make the content available through
the network, one needs to consider multiple design choices, which
range from name structure and security model to more basic issues
such as data segmentation. To fetch content, one also faces new
considerations such as the presence of caching in the network and
the question of data validation, in addition to conventional issues
of data loss recovery and error corrections. What kind of applica-
tion interface should be provided to ease the application develop-
ment? And what protocols would be needed to support the inter-
face? Clearly socket abstraction and associated protocols cannot be
reused, because the model of a virtual channel between two com-
municating processes supported by a socket does not exist in the
NDN architecture.

In this paper we present the design of a new API and its associ-
ated protocol suite that can play socket-equivalent roles in an NDN
network. Our contributions can be summarized as follows:

e A Consumer / Producer programming model, which is specifi-
cally tailored for data dissemination in NDN networks.

e Associated data retrieval and content segmentation protocols.

e A number of supporting mechanisms such as a manifest and
negative acknowledgement, utilized by the protocols below the

API to facilitate the operation of applications.

We have implemented the Consumer / Producer API and the pro-
tocols, and validated them by using the API to develop several pilot
applications. The focus of our evaluation is to have running, cor-
rectly behaving, and real-world applications, and to quantitatively
measure the computational overhead experienced by a single pro-
ducer publishing ADUs for multiple consumers.

The rest of the paper is organized as follows. Section II gives a
brief overview of NDN architecture. Section III contains a detailed
explanation of the programming model and programming abstrac-
tions. Section IV and V provide a description of important concepts
and design of content fetching protocols. Section VI presents the



evaluation of the design through real-world applications. Related
work can be found in Section VII, and conclusion in Section VIII.

2. BACKGROUND

NDN works in a fundamentally different way than IP. To help
the reader easily grasp its core concepts, in this section we first
describe a toy application example, then use this example to explain
the NDN basics.

2.1 A Simple-Video Application

We use a Simple-Video application as an example to help illus-
trate some basic concepts behind applications in general and pos-
sible issues that must be addressed by an application developer.
Simple-Video produces two separate streams of data, video and au-
dio, to give the consumers a choice of either watching the video
with audio, listen to the audio only, or watch the video in silence.
Both video and audio streams consist of a stream of data frames,
and the application should allow a consumer to retrieve individual
frames independently. The consumer application can, for example,
stop fetching audio frames when user hits the “Mute” button, or
skip some video frames after a pause in order to catch up the actual
live video. In general, a video frame is likely too large to be carried
in a single network packet, thus the video producer application also
needs to segment one frame into multiple packets.

One of the existing technologies, MPEG-DASH [7], produces
the content, with either a mixed audio/video stream or two separate
streams, into a sequence of small file segments of equal time du-
ration. File segments are later served over HTTP from the origin
media server or intermediate HTTP caching servers. While there
is a variety of ways applications can produce and fetch data at the
level of application frames, there are repetitive and labour intensive
tasks related to the segmentation of the application data frames and
the retrieval of segments to reassemble an application frame. In the
case of MPEG-DASH, all these low-level details are handled by the
HTTP / TCP protocol machinery.

2.2 Named Data Networking

An NDN network has two types of packets: Interest and Data.
Consumers send Interest packets, i.e. expressing Interests in re-
ceiving specific pieces of data. Producers produce Data packets
to satisfy received Interests. Both types of packets carry a data
name, which uniquely identifies a piece of information object car-
ried in a single Data packet. A Data name in NDN is supplied by
the given application and has multiple components in general. It is
used to retrieve the packet across network; it also contains applica-
tion specific information to facilitate packet processing. As an illus-
trative example, Simple-Video uses the following naming schema.
The data name begins with routable components “/com/youtube/”
which guides all Interest packets carrying this name prefix toward
the data producer. The next component is the name identifier of
the media resource. The component after that separates video and
audio frames into separate namespaces (i.e. name subtrees). Both
video and audio frames are named sequentially. Each video frame
may consist of multiple segments, also named sequentially, while
each audio frame is made of a single segment.

Similar to IP, an NDN network provides datagram delivery. Data
consumers who desire reliable data fetching need to use reliable
fetching services; they may also need to regulate data flow through
pacing Interest packets transmissions.

Data production can be either on demand, or independent from
data consumption. The inherent asynchrony between producers and
consumers creates delicate coordination issues in between, such as
the availability of data, the specifics of data, efc. Interest Selec-

tors is one of the available mechanisms to facilitate data fetching
by multiple consumers, potentially from multiple producers. Any
Interest may carry optional Selectors that specify additional condi-
tions (besides name matching) for content retrieval. For example,
when a consumer sends an Interest with a name prefix, and receives
a Data packet P that is not the desired one, it can try again by re-
sending the Interest with an Exclude selector which may contain
either the exact name of P or P’s digest (e.g. hash of the packet).

2.3 NDN inside a Node

The NDN Forwarding Daemon (NFD) is a multiplexer between
applications and network interfaces inside a node [8]; NFD makes
no distinction between applications and network interfaces, and
views them all as Faces. NFD has a content store for opportunis-
tic caching of passing-by Data packets. NFD may also have a face
to a local repository (e.g. Repo-NG [9]), which provides managed
storage of Data packets.

To make data available, the producer-process registers its name
prefix with NFD to be able to receive interests for its data. The
local NFD adds the prefix to its FIB (e.g. forwarding table) and also
forwards the prefix to the next router. Consumer-process does not
perform any registration — it simply sends Interest packets to the
local NFD which then forwards the Interests toward the producer,
either locally or remotely.

3. PROGRAMMING MODEL

In this section, we define consumer context and producer context
abstractions, together with the rationale behind our design.

3.1 Socket is inappropriate

We aim to design a programming abstraction that would give ap-
plication developers adequate freedom when handling ADUs, at the
same time minimize the complexity associated with the production
and retrieval of ADUs of any size.

In TCP/IP networking, similar tasks are managed by the socket
API. A socket is a container for data transfer parameters holding
the current state of transmission in a virtual channel between two
processes running on IP hosts. Because a socket creates a duplex
pipe for data to flow in both directions, server and client applica-
tions use sockets in more or less the same way with a few minor
differences (e.g. listen() and accept() calls). Socket has no use
without being attached to the channel (e.g. bind() or connect()).
To support “time asynchrony” or delay tolerance between commu-
nicating parties, application developers often resort to higher level
abstractions (e.g. ZeroMQ [10]) suitable for queuing and passing
messages.
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Figure 1: TCP/IP segmentation does not preserve boundaries
of application frames (ADUs). NDN segmentation exposes
these boundaries through naming.
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Figure 2: Producer context can publish data with or without network connectivity.

NDN is a pull-based data dissemination protocol, therefore ap-
plications that consume data behave differently from applications
that produce data. Consequently these applications need different
sets of data transfer parameters. Producer applications, in general,
care about ADU segmentation, securing and caching/storing Data
packets, and incoming Interest demultiplexing. Consumer appli-
cations, on the other hand, care about fetching all Data packets of
each ADU, fetching reliability, verification of received data, as well
as flow and congestion control by controlling their Interest genera-
tion rates.

These observations prompt us to design two programming ab-
stractions: one for consumer applications, and another one for pro-
ducer applications.

3.2 Design goals

To have data delivered over the Internet, large ADUs must be
segmented, because the packet size is limited by network MTU.
There are two major differences in how TCP/IP and NDN handle
data segmentation. First, because TCP treats all application data
as byte streams, TCP segmentation ignores ADU boundaries, thus
ADUs can only be identified after the segment reassembly (Fig-
ure 1). NDN data packets carry the names of individual ADUs or
ADU segments, therefore these packets match to application’s data
units directly.'

The second, and related, difference is the degree of insight and
control that application can have during data transfer. In the sim-
ple example shown in Figure 1, if TCP/IP is used to send several
ADUs back to back across the network and one of the segments is
lost in transit, all the subsequent ADUs, even if they arrive at the
destination, will be blocked from getting delivered to the applica-
tion. This is a well known head-of-line (HOL) blocking problem.
On the other hand, if NDN is used and faces the same segment loss
problem, all successfully received ADUs can be immediately de-
livered to the applications without waiting for the recovery of the
missing segment.

3.2.1 Goals for the consumer abstraction

In identifying the design goals for the consumer abstraction, we
make an initial assumption that, generally speaking, individual ap-
plications would like to organize ADU fetching according to their
own priorities. Therefore we describe the design goals in terms of
what kinds of support that applications may desire in handling the
relations between ADUs. Given we are still experimenting with
this new consumer / producer API, the current sets of design goals,

'"The terms “ADU segment”, “data segment”, and “Data packet”
are used interchangeably in this paper.

as stated below, may be further revised over time as we gain deeper
understanding of applications’ needs. The same can be said for the
goals of the producer abstraction.

At this time we believe that the new consumer abstraction model
should support the following application patterns.

1. Sequential fetching of ADUs, with allowance of missing any
ADU in the stream if necessary. This can be used to support
real time media streaming applications.

2. Parallel fetching of ADUs to speed up content transfer. This can
benefit applications like web download and torrent.

3. Fetching of individual, dynamically generated ADUs, as needed
by web and IoT applications.

3.2.2  Goals for the producer abstraction

Given that NDN producers and consumers do not directly com-
municate, one basic question for producers is where to put the gen-
erated data. We have identified the following three application pat-
terns to be supported at this point.

1. Realtime ADU publishing (and consumption), which can be
used by a large number of applications including video con-
ferencing, games, etc. Publishers may need to “wait for pull”
and keep the ADUs in memory temporarily to handle a possible
mismatch between production and consumption timing.

2. ADU publishing to stable storage, to support potentially large
asynchronies between ADU publishing and consumption in terms
of time, as well as in terms of data popularity (“publish once -
consume multiple times”). This publication pattern can be ben-
eficial for static content services, such as video and web-content
backend applications.

3. ADU publishing to remote stable storage, to support mobile
publishers and IoT publishers. This publication pattern allows
smartphones and sensors to get around their resource limitations
by moving the content to stable locations.

3.3 Producer context

A producer context is used to publish data under a common
prefix (Figure 4). It is initialized by calling producer() primitive
with a given name prefix parameter. Unlike a server side socket
in TCP/IP, a producer context is ready to publish data even with-
out being attached to the network and in the absence of any in-
coming Interests. Except the case of on-demand publishing, our
consumer / producer model has no requirement for publishers and
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Figure 3: Event-based processing of Interest and Data packets in the consumer context.

consumers being ‘connected’ at the same time, therefore data pub-
lication can take place any time, including when the producer is
disconnected. In our Simple-Video example, the publisher pub-
lishes data at its own pace, ahead of fetching by any consumers.
An application process calls produce() operation to start data
publication, passing the name suffix and application frame (ADU)
content. In the Simple-Video example, the name suffix is a frame
number. In general cases, the name suffix parameter allows ap-
plication developers to reuse the same producer context to publish
data in any name subtree. In the Simple-Video application exam-
ple, one context is used for publishing all video frames, and another
context is used for publishing all audio frames. The locations of the
producer contexts in the name tree are illustrated in Figure 4.
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Figure 4: Producer context is initialized with a name prefix
common for all information objects that it generates.

The produce() operation finishes when 1) the application frame
(ADU) is segmented into an appropriate number of Data packets,
2) the segment number is appended to each packet name, 3) each
packet is secured (e.g. signed), and 4) pushed in the send buffer
and out of the context (Figure 2). By default, the segments are
temporarily stored in the send buffer — in-memory storage of Data
packets, while some producer applications may want to write the
resulting Data packets in a permanent storage, such as NDNFS or
Repo-NG [9,11].

The context’s send buffer is different from the socket’s send buffer
in two ways. First, the socket’s send buffer is used to retransmit
unacknowledged segments, whereas the producer context’s send
buffer is used as a temporary cache of Data packets that is being
looked up by incoming Interest packet. In other words, send buffer
softens the time asynchrony between data production and fetching.
Second, in a socket, packets are evicted after being acknowledged,
whereas in a producer context, Data packets are evicted based on
memory availability, e.g. when the application calls produce() with
an already full buffer under FIFO eviction policy.

In order to receive Interests for its data, the producer context
must be attached to the local NFD by calling attach() operation.
The arriving Interests get into a receive buffer and wait there for
their turn to be matched with Data packets in the send buffer. If an

roducer ( /youtube/media-1234/video/ )

Interest matches a Data packet by the name and Interest selectors
successfully, the Interests is satisfied from the send buffer. If a
matching Data packet is not found, an application can be informed
about the Interest.

In some conditions, the rate of incoming Interest packets may be
too high for a particular producer context to process as quickly as
they arrive. In other conditions, the requested data cannot be gen-
erated within the Interest’s lifetime span. Instead of letting the con-
sumers timeout blindly, application can use nack() operation to sat-
isfy the Interests with a negative acknowledgement (Section 4.1),
so that the consumer(s) can handle the situation in a most informed
way.

3.4 Consumer context

A consumer context abstraction is a container that associates a
name prefix with consumer-specific transfer parameters. Consumer
context controls Interest transmission and processing of fetched
Data packets. It is initialized by calling consumer() primitive with
two parameters: 1) a name prefix, 2) a data retrieval protocol.

Note that, in general cases, the name prefix is not a complete
name of the ADU. Since a given NDN namespace forms a name
tree, an application developer can reuse a single consumer context
repeatedly to fetch multiple ADUs under the same name prefix.
In the Simple-Video application example, one can use one context
to fetch all video frames, and another context to fetch all audio
frames. The locations of the consumer contexts in the name tree
are illustrated in Figure 5.

consumer ( /youtube/media-1234/audio/ )
frames

segments Q)

Figure 5: Consumer context is initialized with a name prefix
defining the range of information objects that can be retrieved
from the network.

The data retrieval starts when an application calls consume() op-
eration, which takes the name suffix as an input parameter. In the
case of Simple-Video application, the name suffix is a frame num-
ber. Name suffix parameter allows application developer to reuse
the same context for fetching multiple ADUs (Figure 5). Inside
the context, the data retrieval protocol (Section 5) generates Inter-
ests and processes incoming Data packets with other related events
(Figure 3).

) consumer ( /youtube/media-1234/video/ )



The data retrieval stops under one of the three conditions: 1) last
Data packet of the ADU has been successfully fetched, validated
and reassembled (if needed); 2) irrecoverable fetching error has
occurred; or 3) stop() operation has been called.

4. SUPPORTING MECHANISMS

To support efficient consumer / producer communication described

in the previous sections, we introduce two new mechanisms: neg-
ative acknowledgements and manifests. This section talks about
these mechanisms in more detail.

4.1 Negative acknowledgement

In NDN, consumer applications pull desired Data packets from
the network by expressing Interests. If an Interest does not find
matching Data along the way, it arrives at the producer context,
which either finds the matching Data packet from the send buffer,
or otherwise informs the application to produce the requested data.
The latter case happens when some specific data is being requested
and produced for the first time.

Since NDN is a pull-based network protocol, it shares some com-
mon polling related challenges with HTTP [12]. An HTTP client
can “short poll” the HTTP server (i.e. sending regular requests) in
an attempt to receive the most up-to-date data. The HTTP server
responds with empty reply in case the requested data is not ready,
and the poll request will be repeated again after the client timeout.
To avoid HTTP clients generating requests too frequently, which
can lead to unacceptable burdens on the server and the network,
HTTP long polling is commonly used. Long polling is a technique
of keeping HTTP requests pending or “hanging” at the server until
the requested data is ready to be sent back to the client.

Long polling works well for HTTP, because the underlying TCP
connection ensures that HTTP request is reliably delivered to the
server, and that the HTTP client is still waiting for the data. Since
NDN network layer does not, on its own, ensure reliable transmis-
sion of an Interest all the way to the producer, and, more impor-
tantly, outstanding NDN Interests consume router resources (by
occupying PIT entries), the long polling technique is not a feasi-
ble solution. In order to efficiently handle the polling of dynami-
cally generated data in NDN, two conditions must be satisfied: 1)
consumer application must be certain that its Interest packet has
successfully reached the producer, and 2) producer application can
regulate the polling frequency according to its current conditions.

A negative acknowledgement (NACK) can satisfy these two con-
ditions. We define a NACK as a sub-type of NDN Data packet,
which is generated when the requested data is unavailable. A NACK

carries an error code, a retry timer value, and other optional application-

defined fields filled by the producer application. It informs the con-
sumer that 1) the Interest for its requested data has been received by
the producer, and 2) the error code contains information to advice
the consumer for best next action. Currently, two error codes are
defined as follows:

1. RETRY-AFTER — prompts the data retrieval protocol to sched-
ule Interest retransmission based on the timeout value in the
negative acknowledgement. This mechanism is somewhat sim-
ilar to Retry-After HTTP and SIP header field [13, 14]. NACK
with Retry-After field does not change the Interest pipeline size.

2. NO-DATA — prompts the data retrieval protocol at the con-
sumer side to terminate its operation.

Since NACK packet must be signed like all other Data packet,
additional measures [15] must be taken to prevent malicious con-
sumers from launching a Denial-of-Service attack by forcing the

producer application to generate and sign excessive amounts of
NACK packets.

Since NACKs are NDN Data packets, they can be cached at in-
termediate NDN routers, so that the same NACK packet can be
used to satisfy the Interest packets from multiple consumers re-
questing the same piece of data. A cached NACK becomes stale
when its lifetime (e.g. the FreshnessPeriod field), whose value is
set by the producer context, expires. As a rule of thumb, the life-
time of a NACK packet must not be longer than the retry timeout
value contained in it, otherwise the consumers attempting retry af-
ter the timeout will receive the same cached NACK again, and con-
sequently will wait for another timeout period. One must also keep
in mind that a Data packet can stay at each router hop for the Fresh-
nessPeriod before it becomes stale, and that there can be multiple
router hops between a producer and its consumers. Therefore we
propose to set the FreshnessPeriod of a NACK to be within a small
fraction (10%) of the application specified retry timer.

4.2 Manifest

A well-built NDN application fully utilizes “many-to-many with
caching in-between” communication paradigm. To keep consumers
best informed of the production progress of the data that they are
interested in fetching, a producer application may package together
necessary meta-information to distribute to consumers.

Manifest, proposed in [16], is one of the means to facilitate the
operation of consumer applications by distributing a catalogue. The
catalogue may contain either ordinary NDN names, or special names
which associate the hash (e.g. digest) of a Data packet with its
name. The primary benefit of using catalogues to carry data names
with associated packet digests is the elimination of cryptographic
signing operations for those Data packets. Instead of signing, a
publisher computes a simple hash of every newly produced Data
packet, populates the manifest with names carrying digests, and
signs only the manifest. Consumer applications can verify Data
packets by fetching the manifest and comparing their digest with
the digest listed in the catalogue. As proposed in [16], manifests
carrying the catalogue of names need to be fetched before data
fetching, which introduces an additional round-trip latency.

We propose to embed a manifest as an ADU in the same se-
quence with Data packets to eliminate the undesirable latency from
fetching manifest [17]. A producer context can perform this oper-
ation when an ADU is segmented by the produce() API primitive.
The basic idea is to establish a convention of naming the manifest
as the first segment of the Data packets to be published, so that
consumers simply fetch the manifest together with data via Interest
pipelining. In case where an ADU’s size is too large so that the
names of all its segments cannot fit into a single manifest packet,
multiple manifest packets can be periodically interleaved with data
packets as shown in Figure 6.

| ADU |

| Manifest, Data, | Data, | Data, | Manifest,,, |Datak+2

N—

Key Locator

Data,,; | Data,,

Key Locator

Figure 6: Manifests are embedded in the sequence of data
packets when application data is being segmented.

Manifest embedding enables the consumer application an oppor-
tunity to fetch manifests together with Data packets within the same



sliding Interest window.> By letting the KeyLocator field in each
Data packet point to the corresponding embedded manifest, a con-
sumer application is able to verify each received Data packets im-
mediately without waiting for the rest of the Data packets.

A manifest is realized as a sub-type of NDN Data packet. In
addition to the catalogue of names, manifest can also carry miscel-
laneous meta-information in a form of key-value pairs, such as:

e Current data production rate. Live streaming applications
can benefit from knowing the current rate of Data packet pro-
duction (packaging) and using this knowledge to pace Interest
packets.

e Other available versions. Applications working with multi-
version content can discover available versions of ADUs with-
out iterative discovery using Interest selectors which can be time
consuming.

e First and Last ADU sibling. In most cases, the producer of
the ADU knows the total number of ADUs that constitute some
larger information object (e.g. a video stream). Our Simple-
Video application uses the last ADU name to understand where
the video ends (e.g. frame #2500).

S. DATA RETRIEVAL PROTOCOLS

Based on our experience from developing NDN applications, we
have designed an initial set of data retrieval protocols: Simple Data
Retrieval (SDR), Unreliable Data Retrieval (UDR), and Reliable
Data Retrieval (RDR).

5.1 Simple Data Retrieval

Any communication in an NDN network involves Interest / Data
exchanges, and Simple Data Retrieval protocol (SDR) is the sim-
plest form of fetching Data from NDN networks: send one Interest
to retrieveone Data packet. SDR provides no guarantee of Interest
or Data delivery. If SDR cannot verify an incoming Data packet,
the packet is dropped.

SDR can be used by the applications that:

e do not know the name of the application frame (ADU) and,
therefore, need to discover it using the name prefix and Inter-
est selectors, which could be set via the setcontextoption() API
primitive;

e know the name of ADUs and have small ADUs that fit in one
Data packet;

e want to directly control Interest transmission and error correc-
tions.

5.2 Unreliable Data Retrieval

When an Application Data Unit (ADU) is too large to fit in a
single Data packet, the produce() API primitive automatically seg-
ments this ADU into an appropriate number of Data packets. In this
case, the consumer first needs to send a sequence of Interest pack-
ets to fetch all the data packets of the same ADU, then it needs to
reassemble these Data packets into the ADU, which often implies
dealing with packet losses and error corrections, as well as packet
ordering.

UDR is designed to meet the needs of applications that have re-
laxed requirements for the reliability and ordering of the Data pack-
ets, and are unwilling to pay the price in the latency of loss recov-
ery, or in the performance overhead associated with other means
of reliable delivery. UDR fetches all Data packets that belong to a
single ADU in an unreliable and unordered way, with a simple flow
control and best-effort Interest retransmission as explained below.

*Sliding Interest window includes already sent not-yet-satisfied In-
terests, as well as the Interests scheduled for transmission at the
moment of time.

UDR makes use of the FinalBlockID, one of the optional fields
carried in an NDN data packet, by having the producer set the Fi-
nalBlockID to the number of segments in an ADU. UDR fetches
the ADU of a given name by starting with the segment number
zero, and learns about the total number of segments to be fetched
as soon as any Data packet is received. Next, the protocol enters the
fast start phase and sends as many Interests as MIN (FinalBlockID,
Fast start threshold).® Tf the value of FinalBlockID is greater than
the fast start threshold value, UDR completes fast start phase and
begins to multiplicatively increase sliding Interest window size in
a way similar to the TCP slow start phase. If any Interest times out
during the multiplicative increase phase, the sliding windows size
is reduced by half. To get the basic intuition behind this flow con-
trol scheme, consider a common use case where the ADU consists
of a small number (< 15) of Data packets: UDR can fetch such
small ADUs in two RTTs and avoid bursty transmission for much
larger ADUs (e.g. hundreds of Data packets).

UDR'’s best-effort Internet retransmission works in the following
way: at any given time, if three out-of-order Data packets arrive at
the consumer, UDR immediately retransmits the Interest for the
missing Data packet(s)." UDR can perform multiple fast retrans-
missions per sliding Interest window by keeping an accurate track
of missing and contiguous segment numbers.

UDR does not perform any persistent error correction; it does not
run retransmission timers, nor retransmits Interests upon receiving
NACKSs, which are passed up to the application. UDR deletes Data
packets that fail data verifications. UDR delivers each received
Data packets to applications as soon as possible without enforcing
ordering, thus applications handle received packets directly and are
responsible for the ADU reassembly. This also offers an opportu-
nity for the applications to perform specially tailored error and loss
recovery.

In summary, UDR functionality includes best effort fetching of
single- and multi-segment application data frames (ADUs), and

best effort fast retransmission for potentially lost segments. “Deadline-

oriented” consumer applications (e.g. live streaming) can bene-
fit from using UDR’s machinery and extending it with the custom
functionalities appropriate at the application level.

5.3 Reliable Data Retrieval

When an Interest packet fails to bring back the corresponding
Data packet, it can be due to one of the multiple reasons:

1. the Interest is lost in transit before it reaches the data, which
may reside in cache, or need to be produced;

2. the Interest reaches the producer-application but the application
does not respond due to various reasons;

3. the returning Data packet is lost;

4. the returning Data packet fails the signature validation (e.g. con-
tent is poisoned, etc.).

Reliable Data Retrieval protocol (RDR) uses Interest retransmis-
sion timers to handle packet losses (cases 1 & 3 in the above), and
uses application negative acknowledgements to handle case 2. The
Interest is retransmitted if the expressed Interest packet is not satis-
fied when it times out, or if the negative acknowledgment carrying
Retry-After field is retrieved instead of the actual data.

3The default fast start threshold is 16 Interest packets, which could
be modified via setcontextoption() API call.

“The current implementation of NFD will forward a retransmitted
Interest even if the original Interest has not expired, if the retrans-
mission arrives from the same face and is at least 100ms after the
original Interest.



Data verification error can be caused by packet tampering, con-
tent poisoning by a non-credible publisher, expired certificate of a
credible publisher, or other cases depending on the selected trust
model. Several in-network mechanisms of mitigating content poi-
soning attacks have been proposed by [18], and [19] describing the
content ranking algorithms based on the users’ feedback.

While the Data verification operation is performed separately by
the security part of the library, Data retrieval protocol makes an
attempt to recover from this type of error. To recover from the Data
verification failure, RDR performs retransmission of the Interest
packet with exclude selector set to exclude any possible Data packet
having the same name and the digest (e.g. hash, checksum) of the
packet that has failed verification. Because exclude selector tells
NDN router to retrieve an alternative Data packet, which in general
case requires an extra work to be performed by the router, large
excludes (e.g. containing a lot of excluded name components or
digests) can affect the performance of NDN router. RDR limits
its exclude selector to five digests, which means that the protocol
attempts up to five retransmissions in order to recover from the Data
verification failure.

RDR provides reliable and ordered delivery of the ADU to the
consumer application. Unlike TCP, RDR does not attempt to estab-
lish a connection between the consumer and producer applications.
In RDR, the retrieval of every ADU begins with sending an Interest
packet for segment number zero, and is finished when the last seg-
ment is successfully retrieved. Similar to UDR, the producer sets
the FinalBlockID field in each Data packet to the last segment num-
ber. RDR’s flow control has the same fast start and multiplicative
increase phases as UDR does.

Figure 7 illustrates an example where the consumer application
uses RDR to retrieve dynamically generated data and handle ver-
ification errors. The first Interest is satisfied by poisoned content
from the router cache, which is returned back to the consumer con-
text. The RDR checks the content with the user-specified verifica-
tion routine, and retransmits the Interest(s) with the exclude selec-
tor carrying the digest of the poisoned content. Since the routers
respect the exclude selectors, this second Interest reaches the pro-
ducer context, which needs some time (e.g. several seconds) to pre-
pare the content, and therefore replies with the Retry-After NACK.
This Retry-After NACK packet has /nack in its name suffix, there-
fore it has no impact on the poisoned content in the cache. When
the consumer RDR receives the Retry-After NACK, it schedules
the Interest retransmission accordingly, which later successfully re-
trieves the content from the producer context. Now the router has
two Data packets with identical names but different digests, they
can be either stored side by side or replace one another depending
on the router Content Store policies.

Producer applications can mitigate excessively high rate of Inter-
est arrivals by responding with negative acknowledgements carry-
ing either Retry-After or No-Data fields, depending on the data be-
ing asked. RDR’s flow control utilizes these NACKSs as discussed in
Section 4.1. The traditional mechanism of TCP window size adver-
tisement for flow control purpose is not applicable in NDN, given
the absence of a “connection” between consumers and producers.

Congestion is controlled at the NDN forwarding plane by utiliz-
ing Interest NACK mechanism [20]. Note that Interest NACK is
different from the Data NACK proposed in this paper — it is a net-
work layer packet and its main purpose is to assist NDN routers
in performing quick and informed recovery from network prob-
lems, such as prefix hijacks, link failures, and network congestion.
The NFD running in the local node is expected to handle Interest
NACK, perform congestion control, and enforce fairness among
multiple consumer applications running on the same node. It may
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Figure 7: RDR recovers from the Data verification error and
handles dynamic data generation delay.

also be beneficial to further propagate Interest NACKs up to the
data retrieval protocols, an issue that we plan to investigate.

If three out-of-order Data packets arrive at the consumer, RDR
performs opportunistic fast retransmission of the Interest for the
missing Data packet, in the same way as UDR.

In the presence of the manifests embedded in the sequence of
Data packets (Section 4.2), RDR performs verification of Data pack-
ets with help of catalogues of names in the corresponding manifest
segments. If any Data packet fails its verification with the cata-
logue, RDR retransmits the Interest packet with the implicit digest.
Since the correct digest is already known from the manifest, there
is no need to use exclude selector in this case.

If a sequence of Data packets does not contain embedded mani-
fests with catalogues of names, RDR verifies each packet’s signa-
ture independently, and performs error correction using the exclude
selector as described earlier.

In summary, RDR functionality includes:

e reliable fetching of a single- or multi-segment application frame
(ADU) that may be either pre-generated ahead of time by the
producer application and potentially cached by NDN routers, or
dynamically generated upon an Interest arrival;

e low overhead consumption of dynamically generated applica-
tion frame (ADU) through the use of NACK packets published
by the producer application; and

e persistent recovery from the Data verification failures.

6. EVALUATION

We took an application-driven approach to guide the design and
development of the Consumer / Producer API. This section reports
on our experience from implementing and using the Consumer /
Producer API in real environments, and some preliminary analysis
of the space-computation tradeoff at the producer side.

6.1 Implementation

The Consumer / Producer API is implemented as a user-space
library written in C++, which runs on Mac OS X, Linux, and BSD.
The library is a branch of ndn-cxx 0.3 library [21], and is currently
available at https://github.com/iliamo/Consumer-Producer-API.
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Figure 8: Benefit of having producer’s send buffer for serving
multi-packet ADUs to multiple consumers that pipeline Inter-
ests.

The pilot applications we developed over this new API include
audio and video distributions, and sensing data collection. Our ex-
perience shows that the biggest benefit of this new API is a sig-
nificant reduction in application development efforts as well as the
complexity of the resulting implementation, as compared to devel-
oping applications directly on top of NDN’s raw Interest / Data
exchange APIL.

The first application we tried is NDNtube which distributes static
video contents. NDNtube is an example of applications with sig-
nificant time asynchrony between data publishing and consump-
tion [22]. Video and audio frames are published once to perma-
nent storage, and served to the consumers from storage using the
RDR protocol. A similar application, NDNvideo [23], was used in
a few large scale demonstrations earlier and showed that, in con-
trast to applications based on HTTP/TCP stack, an NDN network
performs scalable content distributions without any special config-
uration [24].

The next application, NDNlive, is similar to NDNtube but sup-
ports live TV broadcasting instead of streaming static contents. Yet
another application is NDNradio, which prototypes the iTunes ra-
dio application. It is worth mentioning that NDNradio was devel-
oped by a student without much programming experience, when
she first started the project with NDN’s raw Interest / Data API, she
could not make much progress, and switching to the new API en-
abled her to successfully finished the implementation. Both NDNlive
and NDNradio are examples of realtime publishing / consumption
applications. Since real time data lose their value shortly after pub-
lication, these Data packets are served from short term in-memory
storage — the send buffer of the producer.

Our latest application prototype developed on top of the new API
is home sensor data collections. It periodically wakes up from
sleep to collect new measurement samples and can also produce
data on demand. If the requested data is not available yet, it uses
nack() with Retry-After code to inform the consumer about the fu-
ture availability of the data (e.g. in 10 seconds) and then enters the
sleep mode during this time period.

6.2 Space-Computation Tradeoff Analysis

Compared to the well tuned TCP/IP implementations, we expect
the performance of the Consumer / Producer API and its proto-
cols to be largely comparable, but likely lower due to several fac-
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Figure 9: Benefit of embedding manifests in the multi-packet

ADUs fetched by multiple consumers that pipeline Interests.

tors: the larger NDN header overhead, the untuned implementation
of the NFD and the library, as well as the cost from packet sign-
ing and verification. However in those applications where multiple
users request the same data, the producer API can potentially per-
form significantly better than the server side socket, because every
ADU (e.g. its Data packets) can serve multiple consumers. More
specifically, the producer API has two mechanisms that help speed
up ADU publishing: an in-memory cache of Data packets (send
buffer) and an optional technique of manifest embedding in the se-
quence of Data packets.

Unlike a TCP socket’s send buffer, which stores the segments
that belong to a single connection, a producer’s send buffer stores
Data packets that share some common name prefix. However given
the producer’s send buffer has a finite size, newly produced data
packet may push out the packets that were produced earlier. If those
evicted packets are requested again, the producer has to generate
them again. Therefore the publishing cost would be lower if the
send buffer is large in size, allowing more ADUs to be kept in the
memory, and would be higher if the send buffer is small, which
causes more “ADU republishing events”.

In a controlled experiment, we modeled the behavior of:

e multiple basic web consumers requesting 20 different personal-
ized web resources (ADUs) in a random order. The retrieval of
the random ADU can potentially cause the “ADU republishing
event” depending on the contents and the size of the producer’s
send buffer; and

e a basic web server serving the above consumers with personal-
ized html pages and other dynamic content. Each ADU consists
of 30 Data packets.

The third factor that affects space-computation tradeoft is the In-
terest pipeline size at the consumer when it tries to fetch any partic-
ular ADU. Interests sent within larger Interest window, fetch more
Data packets at once, leading to fewer “ADU republishing events”.
Figure 8 demonstrates that in the absence of the send buffer, multi-
ple consumers that pipeline Interest packets lead to significant load
(e.g. signing and segmentation) at the producer, while the larger
buffer effectively amortizes publishing cost across multiple con-
sumers.

In the experiment the send buffer size is set to [0, 25, 50, 100,
200, 400, 800] of Data packets, and the results are shown in Fig-
ure 8. It shows that without the send buffer, multiple consumers,
each sending many Interests, are able to overload the producer due



to the signing and segmentation overhead. A larger buffer can ef-
fectively amortize these same costs across multiple consumers.

We ran the same experiment to understand the performance im-
plications of embedding manifests in the sequence of Data pack-
ets. This technique demonstrated up to 32 times increase of the
speed of ADU publishing as illustrated by the Figure 9. Both ex-
periments were conducted on the Mac OS X platform with trusted
platform module (Mac OS X Keychain) used to produce RSA sig-
natures with SHA256 digest.

7. RELATED WORK

Over the years multiple efforts have attempted to adapt applica-
tion level framing at the transport layer (Structured Streams [25],
HTTP 2.0 [26]), or above the transport layer (Publish/Subscribe [27]).
However all these efforts are built over the existing TCP/IP protocol
stack. A more recent effort (Named Data Socket [28]) proposed to
provide some ALF support over an NDN network through a mod-
ified socket system. A few publish / subscribe systems have been
proposed for NDN overlays, such as COPSS [29] and DDS-over-
CDN-over-NDN [30]. In this section, we provide a brief descrip-
tion of the above research directions and highlight their differences
with the Consumer / Producer API which is specifically designed
to work over NDN.

7.1 Structured streams & HTTP 2.0

It has been well recognized that TCP’s byte stream model does
not match all applications’ needs, while UDP’s best effort datagram
model leaves too much work to applications. Structured Stream
Transport (SST) enhances the traditional stream abstraction with
a hierarchical hereditary structure, allowing applications to create
lightweight child streams from any existing stream [25]. Unlike
TCP, these lightweight streams offer independent data transfer and
flow control for each stream, allowing different transactions to pro-
ceed in parallel without head-of-line blocking, but sharing one con-
gestion control context. SST supports both reliable and best-effort
delivery in a way that semantically unifies datagrams with streams
and solves the classic “large datagram” problem.

HTTP 2.0 proposal addresses similar issues by optimizing the
mapping of HTTP’s semantics to an underlying stream [26]. Its key
features include: 1) multiplexing of HTTP requests over a single
connection, allowing concurrent HTTP requests/responses, and 2)
prioritization of the requests, providing the ability to indicate which
HTTP request is more important than others, and therefore avoid
head-of-line blocking.

However both SST and HTTP 2.0 are confined to IP’s point-to-
point packet delivery, and the application data units are invisible at
the network layer. Consequently their data priority only has the ef-
fect at the end-to-end level, their scalability (for web service) must
rely on other means to address, and their requirement of the direct
connectivity between client and server makes them infeasible in
mobile and delay tolerant scenarios.

7.2 Publish / Subscribe

Publish / subscribe communication offers multi-point non-host-
based addressing: topic-based, content-based, and type-based [27].
Subscribers register their interest in events by calling a subscribe()
operation on the event service, without knowing the effective sources
of these events. This subscription information remains stored in
the event service and is not forwarded to publishers. The symmet-
ric operation unsubscribe() terminates a subscription. Event-based
nature of this interaction leads to time decoupling between sub-
scribers and publishers. To generate an event, a publisher typically
calls a publish() operation. The event service propagates the event

to all relevant subscribers. Publishers also often have the ability
to advertise the nature of their future events through an advertise()
operation.

Publish / subscribe communication work with application data
units, but is different from the consumer / producer communication
in some important ways. First, the majority of publish / subscribe
systems run on top of today’s point-to-point transport layer (e.g.
TCP, SCTP), which provides reliable delivery and segmentation.
The rendezvous point (e.g. event service) between publishers and
subscribers raise concerns about single point of failure and system
scalability. Other concerns include the feasibility of supporting re-
altime, on-demand dynamic data production, due to the additional
latency caused by the introduction of the event service.

Second, for the few publish / subscribe systems capable of run-
ning on top of Named Data Networking, their designs are not cen-
tered on the data directly. COPSS [29] introduces a push-based de-
livery mechanism using multicast in a content centric framework.
At the content centric forwarding layer, COPSS uses a multiple-
sender, multiple-receiver multicast capability with the use of Ren-
dezvous Points (RP). DDS-over-CDN-over-NDN [30] offers a push-
based delivery over simplified Content Delivery Network (sCDN).
When DDS has created subscriber and publisher entities, SCDN is
invoked to send a subscription message from the subscriber. This
message is flooded through the network to look for an appropriate
publisher. When a publisher is found, the requested content ob-
jects are forwarded to the subscriber by following the appropriate
directed acyclic graph (DAG) in a hop-by-hop, reliable store-and-
forward manner.

7.3 Named Networking Socket

Named Networking Socket is an implementation of the process-
to-content (PCC) communication model [28]. The design extends
Unix implementation of the BSD socket with a novel Named Net-
working domain, which implies a layered architecture with distinc-
tive network, transport and application layers. The API does not
perform conversion of application data unit (ADU) to transmis-
sion units. The assumption is that an ADU corresponds to a con-
tent segment and defines the granularity for which the application
can support out-of-order packets and recovery from packet losses.
Therefore, the publisher-process is in charge of defining the proper
ADU size based on application constraints. NaNet socket provides
a datagram ADU (single-segment) and reliable byte-stream content
retrieval mechanisms.

8. CONCLUSION

The seminal paper [6], published 25 years ago, clearly articu-
lated the value of applying the concept of application level fram-
ing to network protocol development by directly using application
data unit (ADU). [31] further demonstrated that communicating
by ADUs is particularly valuable in building many-to-many dis-
tributed applications. However because the work done in [31] was
built upon the existing IP protocol stack where the network layer
had no concept of data, the authors used IP multicast group, en-
hanced with various tweaks, to get packets to the interested nodes.

In today’s Internet, network and transport layers are completely
decoupled from application layers in namespace, because each layer
has its own namespace (e.g. address and port versus application
data names), and in timing, because socket simply gets a virtual
channel ready, but the application decides when packets are actu-
ally sent. This insulation makes it easy to design each part on its
own, however when multiple layers are put together, they often do
not work most coherently. NDN’s direct use of application names
at network layer removed the insulation, which opens new potential



for developing an overall cohesive system where applications can
make the best use from the network transport.

NDN is able to support application level framing throughout the
network, and Consumer / Producer API makes it easy for appli-
cations to publish and retrieve application frames from the net-
work. Our experience with several pilot applications proved that
Consumer / Producer API benefits application developers in terms
of ease of development and functionality. The Consumer / Pro-
ducer API is still at its early development stage, and we would like
to invite others to experiment with it and help further improve its

functionality.
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