
Investigating REST API in NDN (Version 2)

Tai-Lin Chu

Feb 15, 2015

1 Introduction

If REST API is directly implemented in NDN, it will likely increase the interest
name or number of round trips. Given that current REST architecture is built
on top of HTTP, fitting it directly in NDN seems inappropriate. The goal of
this project is to investigate software architecture that not only has properties
of REST but also is native to NDN.

2 REST Constraint

In the original paper of REST architecture, the constraints guide the design.

1. client-server/separation UI from data
2. stateless communication
3. cache
4. uniform interface

• resource id
• manipulate resource through representation
• self-descriptive msg
• hypermedia as the engine of app state

5. layered system/encap
6. (optional) code on demand

3 Relate REST Constraints to NDN

1. The notion of client-server is replaced by data consumer-producer. The
client is still one machine, but the server might be multiple machines.

1



2. Statelessness is a requirement of caching.
3. Caching is well-supported in NDN. No effort needs to be done.
4. The resource id is NDN name. It is also non-trivial how to manipulate

resources through representation in NDN. NDN name is self-descriptive.
5. Hierarchical/layered system is a property of NDN naming convention. No

effort needs to be done.

From this analysis, the problems to solve are:

1. client-server/consumer-producer communication
2. manipulate resource with NDN packet

4 Other constraints from NDN

4.1 efficiency

See Ilya’s paper for issues related to efficiency. Here only new issues are discussed.

4.2 anonymity

Both client and server can be data producer and consumer. However, when NDN
client becomes data producer, it still needs to be anonymous to the network.
In other words, the client (normally data consumer) cannot register prefixes.
Previous works do not address this issue.

4.3 minimum modification to NDN architecture

The solutions that modify packet processing, packet format and overall archi-
tecture should be avoided. If such modifications are needed, they should be
minimal.

4.4 exploit statefulness of network

Use the statefulness property of NDN as an advantage.

5 Manipulate resource with NDN packet

Common manipulations are CRUD (CREATE, READ, UPDATE, DELETE).
READ is supported already.

2



• CREATE in NDN implies the system needs to give an unique name to a
newly allocated resource.

• UPDATE in NDN implies the system needs to give an unique and incre-
menting version number.

In either case, the system needs to be stateful in resource allocation, and the
data flows from client to server.

6 Proposed solution: backward pit entry

Changes:

• new dataType: pendingData
• interest/data processing pipeline

When a client wants to send data to a server, it first sends an interest. All pit
entries along the path are added as usual. When server responds to client, it sends
pendingData, which is a data packet that has an unique name (pendingData
name) and empty content. All pit entries along the path are erased when it
satisfies the interest, but at the same time, backward pit entries are created
along the path with pendingData name. Finally the client will send data with
exact pendingData name to the server. The server then checks the client identity
from the data packet.

This solution preserves the asymmetric communication model of NDN, and has
no change to the packet format. The only change is that all NDN forwarder
needs to add a processing rule to handle the new dataType: pendingData. It
leverages static consumer (server) to bootstrap the communication.

This solution achieves anonymity by not requiring clients to register prefixes.

This solution also works around the problems presented in Ilya’s paper.

6.1 DDOS on static consumer (server)?

It seems that the communication is susceptible to DDOS attack. But:

1. There are multiple servers that can answer interest from client.
2. The servers can decide whether to respond with pendingData depending

on the workload.

3



7 Future work

PendingData is a viable solution with the following properties:

1. efficient
2. simple (minimal changes)
3. address REST constraints
4. anonymous

By using static consumer, producer can start sending data to consumer without
routing update.

4


	Introduction
	REST Constraint
	Relate REST Constraints to NDN
	Other constraints from NDN
	efficiency
	anonymity
	minimum modification to NDN architecture
	exploit statefulness of network

	Manipulate resource with NDN packet
	Proposed solution: backward pit entry
	DDOS on static consumer (server)?

	Future work

